Supplementary Information: New tricks for old dogs: Improving accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions

Jejoong Yoo and Aleksei Aksimentiev*

Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

E-mail: aksiment@illinois.edu

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

Figure S1: Validation and calibration of Rb^+-Cl^- (A) and Cs^+-Cl^- (B) ion pair interactions for the AMBER ff99 force fields using osmotic pressure simulations. Standard ion parameters optimized for the TIP3P water were taken from Joung and Cheatham.¹ The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones σ parameters for cation–anion atom pairs. Experimental data were taken from Ref. 4. See Table 3 for the changes in σ parameters.

Figure S2: Validation and calibration of Li^+-Br^- (A), Na^+-Br^- (B), K^+-Br^- (C), Rb^+-Br^- (D), and Cs^+-Br^- (E) ion pair interactions for the AMBER ff99 force fields using osmotic pressure simulations. Standard ion parameters optimized for the TIP3P water were taken from Joung and Cheatham.¹ The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones σ parameters for cation–anion atom pairs. Experimental data were taken from Ref. 4. See Table 3 for the changes in σ parameters.

Figure S3: Validation and calibration of Li^+-I^- (A), Na^+-I^- (B), K^+-I^- (C), Rb^+-I^- (D), and Cs^+-I^- (E) ion pair interactions for the AMBER ff99 force fields using osmotic pressure simulations. Standard ion parameters optimized for the TIP3P water were taken from Joung and Cheatham.¹ The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones σ parameters for cation–anion atom pairs. Experimental data were taken from Ref. 4. See Table 3 for the changes in σ parameters.

Figure S4: Validation and calibration of Rb^+-Ac^- (A) and Cs^+-Ac^- (B) ion pair interactions for the AMBER ff99 force fields using osmotic pressure simulations. Standard ion parameters optimized for the TIP3P water were taken from Joung and Cheatham.¹ Standard parameters for acetate were taken from AMBER ff99. The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones σ parameters for cation-acetate oxygen atom pairs. Experimental data were taken from Ref. 4. See Table 3 for the changes in σ parameters.

Figure S5: Validation and calibration of $Mg^{2+}-Br^-(A)$, $Mg^{2+}-I^-(B)$, $Ca^{2+}-Br^-(C)$, and $Ca^{2+}-I^-(D)$ ion pair interactions for the AMBER ff99 force fields using osmotic pressure simulations. Standard parameters for Mg^{2+} and Ca^{2+} were taken from the CHARMM36 force field.⁵ In all calibration simulations that used NBFIX, Mg^{2+} and Ca^{2+} ions were in the hexahydrate and heptahydrate forms, respectively; the dipole moment of the water molecules forming hexa- and heptahydrates was adjusted to account for the polarization effect.² Standard parameters for Br^- and I^- were taken from Joung and Cheatham.¹ The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones R_{\min} parameter of the hexa- or heptahydrate water oxygen – anion atom pairs. Experimental data were taken from Ref. 4. See Table 3 for the changes in σ parameters.

Figure S6: Validation and calibration of Rb^+-Cl^- (A) and Cs^+-Cl^- (B) ion pair interactions for the CHARMM36 force field using osmotic pressure simulations. The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones R_{\min} parameters for cation-anion atom pairs. Experimental data were taken from Ref. 4. See Table 4 for the changes in R_{\min} parameters.

Figure S7: Validation and calibration of Rb^+-Ac^- (A) and Cs^+-Ac^- (B) ion pair interactions for the CHARMM36 force field using osmotic pressure simulations. The simulation method for computing osmotic pressure was similar to that used in Ref. 2 and 3. NBFIX corrections, if necessary, were applied to the Lennard-Jones R_{\min} parameters for cation-acetate oxygen atom pairs. Experimental data were taken from Ref. 4. See Table 4 for the changes in R_{\min} parameters.

References

- Joung, I. S.; Cheatham, T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041.
- (2) Yoo, J.; Aksimentiev, A. Improved Parametrization of Li⁺, Na⁺, K⁺, and Mg²⁺ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems. J. Phys. Chem. Lett. 2012, 3, 45–50.
- (3) Yoo, J.; Aksimentiev, A. Improved Parameterization of Amine–Carboxylate and Amine– Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields. J. Chem. Theory Comput. 2016, 12, 430–443.
- (4) Robinson, R. A.; Stokes, R. H. *Electrolyte Solutions*; Butterworths scientific publications, 1959.
- (5) Hart, K.; Foloppe, N.; Baker, C. M.; Denning, E. J.; Nilsson, L.; MacKerell, Jr., A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362.