Supporting Information:

Effect of temperature and hydrophilic ratio on the structure of poly(N-vinylcaprolactam)-blockpoly(dimethylsiloxane)-block-poly(Nvinylcaprolactam) polymersomes

Yiming Yang^{1&}, Aaron Alford^{1&}, Veronika Kozlovskaya¹, Shidi Zhao², Himanshu Joshi,² Eunjung Kim³, Shuo Qian⁴, Volker Urban⁴, Donald Cropek³, Aleksei Aksimentiev², Eugenia Kharlampieva^{1,5,*}

¹ Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States

² Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States

³ U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States ⁴ Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

⁵Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States

* Email: ekharlam@uab.edu

Table S1. Number-Average Molecular Weights (M_n), Polydispersity (\oplus) of the Block Copolymers via GPC (Linear polystyrene samples were used as standards for GPC calibration)

Hydrophobic block	Hydrophilic block	M _n , Da	Ð
PDMS ₆₅	PMOXA ₁₄	5091	1.17
	PVCL ₁₀	5034	1.13
	PVCL ₁₅	5209	1.15
	PVCL ₂₁	6092	1.15
PDMS ₄₇	PVCL ₇	3967	1.10
PDMS ₃₀	PVCL ₅	3312	1.17

Figure S1. GPC traces of PMOXA₁₄-PDMS₆₅-PMOXA₁₄, PVCL₇-PDMS₄₇-PVCL₇, and PVCL₅-PDMS₃₀-PVCL₅ triblock copolymers.

Hydrophobic block	Hydrophilic block	Temperature	scale	avg core rad (A)	shell thickness (A)	polydisp (0,1)	SLD core (A ⁻²)	SLD shell (A ⁻²)	SLD solvent (A^{-2})
PDMS65	PMOXA14	25°C	6.01E-08	670.351	126.931	0.47573771	2.34E-06	1.90E-06	6.34E-06
		55°C	6.01E-08	663.234	130.539	0.61605592	2.34E-06	1.90E-06	6.34E-06
	PVCL10	25°C	2.45E-06	1619.478	141.523	0.2925268	2.84E-06	1.90E-06	6.34E-06
		55°C	2.45E-06	1293.459	117.239	0.30235111	2.84E-06	2.46E-06	6.34E-06
	PVCL15	25°C	2.46E-06	870.372	160.92	0.29346286	2.44E-06	1.90E-06	6.34E-06
		55°C	2.46E-06	760.231	130.169	0.47597947	2.44E-06	2.14E-06	6.34E-06
	PVCL21	25°C	2.18E-05	724.792	191.917	0.48731764	2.65E-06	1.82E-06	6.34E-06
		55°C	2.18E-05	704.539	136.212	0.65981751	2.65E-06	1.90E-06	6.34E-06
PDMS47	PVCL7	25°C	0.15147485	1496.145	103.427	0.37675478	4.80E-06	4.73E-06	4.17E-06
		55°C	0.15147485	1274.938	87.545	0.21274795	4.73E-06	4.19E-06	4.24E-06
PDMS30	PVCL5	25°C	0.02248607	1398.922	85.587	0.81811423	5.32E-06	2.09E-06	2.83E-06
		55°C	0.12868921	1099.901	80.099	0.70329481	4.73E-06	3.90E-06	4.24E-06

Table S2. Fit Parameters Obtained from the Poly Core–Shell Model Deduced from SANS Curves.

Figure S2. NMR spectra of bis(hydroxyethyl)-oxypropyl poly(dimethylsiloxane) (HO-PDMS₃₀-OH), the product of end group decoration (Br-PDMS₃₀-Br), and the final macro initiator (X-PDMS₃₀-X) and its chemical structure. According to the integration values, 97% of the hydroxy groups from PDMS₃₀-OH were modified to incorporate the CTA.

Figure S3. Temperature-dependent turbidity of PVCL homopolymer in H₂O and D₂O. Temperature-dependent scattering intensity of polymer solutions was determined with a fluorescence spectrophotometer (Varian, Cary Eclipse). The scattering intensity of 2 mL of PVCL homopolymer solutions with the concentration of 0.5 mg mL⁻¹ was measured at λ =700 nm from 24 °C to 40 °C at the rate of 0.2 °C per minute.

Figure S4. Cryo-TEM images of (a) PVCL₁₀-PDMS₆₅-PVCL₁₀ and (b) PVCL₅-PDMS₃₀-PVCL₅.

Figure S5. Simulated end-to-end distance of PVCL₅ at four temperature conditions. Each panel corresponds to an independent simulation replica.

Figure S6. Simulated end-to-end distance of PVCL₇ at four temperature conditions. Each panel corresponds to an independent simulation replica.

Figure S7. Simulated end-to-end distance of $PVCL_{10}$ at four temperature conditions. Each panel corresponds to an independent simulation replica.

Figure S8. Snapshots of animations of MD trajectories illustrating the behavior of a $PVCL_5$ polymer at 275 K and at 238 K; and of a $PVCL_{10}$ polymer at 275 K and at 328 K. The backbone and side chains of each polymer are shown in blue and red, respectively, water and ions are not shown for clarity.