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Figure S1. Energy gap fluctuations of equivalent residues in CTPR. A) Y43 and its 
equivalent residues in the eight repeat units of CTPR8. The sidechain of the equivalent residues 
are highlighted using green spheres. The unit number for each of the residues is indicated next to 
the residue. B) Electrostatic energy gap  fluctuation for the oxidation half reaction computed for  
equivalent tyrosine residues from the eight repeat subunits of CTPR. The distributions have been 
normalized. 



Ver 1-23-2023

2

Figure S2: Linear fit to the experimentally-determined bias distribution. K(L) is the fraction of 
the applied bias that appears across the molecule. The potential drop at the contacts is 𝜂(𝐿) = 𝑉𝑏

. 
1 ― 𝐾(𝐿)

2 ≈ 𝑉𝑏(0.5 ― 0.02042𝐿 Å)

Stokes-shift and Distance Dynamics

The dynamical crossover parameter g accounts for the solvent dynamical control of the rate pre-
exponential factor. Equation S1 shows that g includes two relaxation times: the integral 
relaxation times τX

 

for the Stokes-shift dynamics and the relaxation time τR for the dynamics of 
the donor-acceptor distance7 

  (S1)𝑔 =
2𝜋𝑉2

𝐷𝐴𝜏𝑋

𝜎𝑋ℏ
𝑒

3
2𝛾2⟨(𝛿𝑅)2⟩

2𝛽𝐹𝑎𝑐𝑡 + 4(𝜏𝑋/𝜏𝑅)𝛾2⟨(𝛿𝑅)2⟩

In addition, , γ is the parameter of the exponential fall-off of the squared donor-𝜎2
𝑋 = 2𝑘𝐵𝑇𝜆

acceptor electronic coupling and  is the distance variance. 〈(𝛿𝑅)2〉

The Hopfield equation8 used to calculate  is based on the edge-to-edge distance ( , in 𝑉𝐷𝐴 𝑅𝑒𝑑𝑔𝑒
nm) between the donor and acceptor

   (S2)𝑉𝐷𝐴 =
2.7𝑒𝑉
𝑁𝐴𝑁𝐷

𝑒 ―7.2𝑅𝑒𝑑𝑔𝑒

Here  for tyrosine and  for tryptophan. In addition, the activation energy  𝑁𝐷,𝐴 = 7 𝑁𝐷,𝐴 = 9 ΔG †

in Eq. 1 is calculated as

  (S3)ΔG † =
(𝜆𝑟 ± 𝛥𝐺)2

4𝜆𝑟

with “+’’ and “-” referring to the forward and backward transitions. In Eq. S3,   is the reaction 𝜆𝑟

(superscript “r”)  reorganization energy calculated from the equation9
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       (S4)𝜆𝑟 = (𝜆𝑆𝑡)2/λ

where the variance reorganization energy  is calculated from the variance of the λ = 𝜎2
𝑋/2𝑘𝐵𝑇

energy gap reaction coordinate . We take the mean of the forward and backward  to calculate 𝑋 𝜆
the reaction reorganization energy  in Eq. S4. The Stokes-shift reorganization energy  is 𝜆𝑟 𝜆𝑆𝑡

given by the difference of average values of the energy gap in the initial and final electron-
transfer states

 (S5)𝜆𝑆𝑡 =
|⟨𝑋⟩1 ― ⟨𝑋⟩2|

2

Calculations of the Stokes-shift and donor-acceptor distance dynamics were based on MD 
simulations using NAMD2 with a 4 fs integration time step and with hydrogen mass repartition.10 
Simulations in the NPT ensemble were performed using a Langevin dynamics thermostat and the 
Nose-Hoover Langevin4,5 piston pressure control set at 310 K and 1 atm.  The Stokes-shift 
dynamics were calculated using two MD trajectories, one being 1 ns in duration and sampled 
every 12 fs and another being 250 ns in duration and sampled every 10 ps. Both simulation 
systems probed the same electron transfer reaction between oxidized residue Y43 and neutral 
Y77. The energy gap was calculated as a function of time for the short and long trajectories. The 
two trajectories were combined while disposing the first 1ns of the longer trajectory. The Stokes-
shift correlation function  )= <δX(t)δX(0)> was normalized and fitted to a sum of a 𝐶𝑋(𝑡
Gaussian ballistic decay and two exponential functions

(S6)𝑆𝑋(𝑡) =
𝐶𝑋(𝑡)
𝐶𝑋(0) = (1 ― 𝑎 ― 𝑏)𝑒 ― 𝑡2/𝜆1 +𝑎𝑒 ―𝑡/𝜆2 +𝑏𝑒 ―𝑡/𝜆3

The MD data and the fit are shown in Fig S3. The fit was obtained with the parameters: a = 
0.085, b = 0.662, = 0.0777 ns2, 

 

= 3.8 x 10−3 ns, and = 6 x 10−5 ns. These fitting 𝜆1 𝜆2 𝜆3
parameters give the integral relaxation time of 20 ps.

The relaxation time for the dynamics of the donor-acceptor distance was calculated from a 65 ns 
trajectory. The center-of mass distance R(t) between Y55—Y76 residue pair was sampled with 
the time step of 2.5 ps producing the correlation function 

   (S7)𝑆𝑅(𝑡) =
𝐶𝑅(𝑡)
𝐶𝑅(0) = 𝑒 ―2.953𝑡0.27

where = <δR(t)δR(0)>. The result is shown in Fig S4. The fit to Eq. S7 yields the integral 𝐶𝑅(𝑡)
relaxation time  = 281 ps.𝜏𝑅
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Figure S3: Stokes-shift time correlation function. The dots and stars are the data from MD 
simulation, while the dashed line indicates the fit to Eq. 6. The grey stars indicate correlation 
data from 10ps sampling step and the black dots indicate correlation data during the 12fs step. 

Figure S4: Distance time 
correlation function. The dots are 

the data from MD simulation, while the 
dashed line indicates the fit to Eq. 

7.   
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Figure S5: Hopfield equation(dashed) and direct ab initio calculations of VDA (eV) from Cailliez 
et al.1 (orange) and Ludemann et al.2 (blue). The distance is edge-to-edge between two Trp 
residues in Angstroms.  

Polarizability

We conduct the MD simulations in non-polarizable force fields, which do not account for 
screening of electrostatic interaction by electronic induced dipole moments. The standard 
dielectric theories account for the medium polarization in terms of the Pekar factor  𝑐0 =

1
𝜖∞

―
1
𝜖𝑠

which results in the reduction of the reorganization energy by a factor  when the dielectric ≈ 2
constant due to induced dipole  is accounted for (  is the static dielectric constant). 𝜖∞ 𝜖𝑠
Microscopic simulations and analytical theories11,12,13 indicate that the reduction is smaller than 
suggested by continuum theories, but the problem has not been studied in depth for protein 
electron transfer.14 With  of water, the reduction compared to nonpolarizable solvents is 0.8 𝜖∞
and this factor was used here to rescale the reorganization energies from MD simulations. The 
corrected  and  are the MD values (Table S1) multiplied by a factor of 0.8. As the result of λ 𝜆𝑆𝑡

this correction, the reaction reorganization energy in Eq 5 is also multiplied by 0.8.  

Rate Calculations

Applying both relaxation times to Eq S1, we find that, due to a large relaxation time of distance 
fluctuations  = 281 ps, the term including  in the denominator of Eq. 1 can be dropped. A 𝜏𝑅 𝜏𝑋/𝜏𝑅
simpler result for the crossover parameter g follows

(S8)𝑔 =
𝜋𝑉2

𝐷𝐴𝜏𝑋

ℏ 𝜆𝐹𝑎𝑐𝑡
 𝑒

3
2𝛾2⟨(𝛿𝑅)2⟩

We also find that the parameter g is large, g ≈ 55 at , when nm-1 and 𝑅 ≈ 0.6nm 𝛾 = 14.4 〈(𝛿𝑅)2〉
 nm-1 are adopted. The parameter  is taken from the Hopfield equation (Eq. S2) used = 0.0412 𝛾

to calculate the electronic coupling and the variance of the donor-acceptor distance is from MD 
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simulations of the Y55-Y76 pair adopted for all other donor-acceptor pairs.  This value of  𝑔
implies that, at relatively short distances, electron hops between the residues are in the dynamics 
controlled regime when the rate constant is not affected by the electronic coupling. This happens 
because the total reaction rate includes the parameter g in the denominator of the following 
relation

    (S9)𝑘 = 𝑘𝑁𝐴/(1 + 𝑔)

Here,  is the non-adiabatic rate constant given by the equation 𝑘𝑁𝐴

  (S10)kNA =  
V2

DA

ℏ
π

k𝐵Tλr exp[1
2γ2〈(δR)2〉 ―

ΔG †

k𝐵T ] 

The dynamics-controlled electron-transfer rate constant becomes

(S11)𝑘 =
1
𝜏𝑋

ΔG †

k𝐵T𝜋𝑒
― 𝛾2⟨(𝛿𝑅)2⟩ ―

ΔG †

k𝐵T

The rate calculations between pairs of residues (Table S1) produce the parameter g spanning a 
broad range of values such that both the dynamics-controlled and nonadiabtic limits apply to 
specific intra-protein electron hops. The appearance of the crossover parameter g in the form 
given by Eqs. S1 and S8 leads to slight deviations from the detailed balance condition requiring 
the ratio of the forward and backward rate constant to be equal to the Boltzmann factor exp[

. Given that the Derrida model used here for the calculation of the carriers diffusion -β∆G]
constant requires detailed balance, we used a somewhat simplified form of the parameter g 
replacing  in Eqs. 1 and 9 with . The correction is mostly insignificant for the rate ΔG † 𝜆𝑟/4
values, but strictly preserves the detailed balance. 

Diffusion constant from the Derrida model

Following Derrida17

     (S12)𝐷 =
𝑁Δ𝑥2

∑𝑁
𝑛 = 1𝑟𝑛

∑𝑁
𝑛 = 1𝑘𝑛 + 1,𝑛𝑟𝑛 𝑢𝑛

where the step size  is calculated as the average distance between the residues and∆𝑥

𝑟𝑛 =
1

𝑘𝑛 + 1,𝑛[1 +
𝑁 ― 1

∑
𝑖 = 1

𝑖

∏
𝑗 = 1

𝑘𝑛 + 𝑗 ― 1,𝑛 + 𝑗

𝑘𝑛 + 𝑗 + 1,𝑛 + 𝑗]
(S13)

𝑢𝑛 =
1

𝑘𝑛 + 1,𝑛[1 +
𝑁 ― 1

∑
𝑖 = 1

𝑖

∏
𝑗 = 1

𝑘𝑛 ― 𝑗,𝑛 + 1 ― 𝑗

𝑘𝑛 + 1 ― 𝑗,𝑛 ― 𝑗]
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Applied to the path listed in Table S3, these equations yield D = 3.06 nm2/ns.  Similar numbers 
are found for other single paths.  Applied to the 433 such paths connecting Y36 to Y89, we 
obtain a sum of the 433 D values of 578 nm2/ns.

Charge Injection Calculation

The rate constants for the two contact sites, 1, 2 are

𝑘1,2
𝑅 =

Δ
ℏerfc( 𝜆𝑟 ∓ 𝑒𝜂

4𝜆𝑟𝑘𝐵𝑇)
(S14)

𝑘1,2
𝑂 =

Δ
ℏerfc( 𝜆𝑟 ± 𝑒𝜂

4𝜆𝑟𝑘𝐵𝑇)
where R and O refer to reduction or oxidation and we assume the same electronic coupling to the 

contacts, Δ, and the potential drop at the contacts,  is given in the caption to Figure S2.  “-“ and 𝜂,

“+” refer to 1 and 2, respectively.

The kinetic equation for the fraction of holes  at the single injection site is 𝑛

                   (S15)∂𝑡𝑛(𝑥) = 𝑘𝑅𝑐𝑠𝑛(𝑥) ― 𝑘𝑂𝑐𝑠(1 ― 𝑛(𝑥))

Where   and    and cs=1/S is the surface concentration determined by 𝑘𝑅 = 𝑘1
𝑅 + 𝑘2

𝑅 𝑘𝑂 = 𝑘1
𝑂 + 𝑘2

𝑂

the area of the contact, S. At the stationary condition determined by , one gets   ∂𝑡𝑛(𝑥) = 0 𝑛 =
1
2

and the following expression for the total current I  through the contact

(S16)𝐼 =
𝑒Δ
ℏ [erfc ( 𝜆𝑟 ― 𝑒𝜂

4𝜆𝑟𝑘𝐵𝑇) ― erfc ( 𝜆𝑟 + 𝑒𝜂
4𝜆𝑟𝑘𝐵𝑇)]

Kinetic Monte Carlo Model and Brownian diffusion : We perform single charge kinetic 

Monte Carlo based on a previous routine implemented in python21 to simulate charge hopping in 
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the graph based representation of the protein. Each node in the graph is connected by two edges, 

one for forward and one for backward rates. Every iteration of the Monte Carlo involves 

determining the lifetime of the charge on the node i which it currently resides on and the node 

which the charge hops to next. The charge can only hop to the site which are connected to its 

current node by an edge. First, the lifetime of the charge  is determined from an exponential 𝜏

random variable T as  τ = T/Γi, where Γi is the sum of the weights of the edges which originate 

at node i. 

             (S17)              Γ𝑖 =  ∑𝑖Γ𝑖𝑗

Γij is the weight of the edge connecting nodes i to j which is essentially the rate of charge 

transfer between the residues represented by i and j. Next, to determine which residue, the charge 

hops to, we calculate the probability of hopping to that residue/node j. 

                   (S18)𝑝𝑖𝑗 =
Γ𝑖𝑗

Γ𝑖

A random number u is drawn from a uniform distribution and the next site k is determined from 

the inequality.

           (S19)∑
𝑗 < 𝑘𝑝𝑖𝑗 ≤ 𝑢 < ∑

𝑗 ≤ 𝑘𝑝𝑖𝑗

The Monte Carlo (MC) simulation ends when the charge arrives at the residue in the protein 

which is in contact with the electrodes. We store the residence time τ for every hop and the 

distance  during every 𝑥𝑖 between the center of mass of the residue sidechains travelled 

hop. We then calculate the average Brownian diffusion for that path. 

                  (S20)𝐷 =  ⟨𝑥2
𝑖 /2τ𝑖 ⟩

The diffusion constant is calculated for 100000 MC with the starting residue as W35. Another 

100000 MC runs are performed for Y36 as the starting residue, summarized Figure 6 of the main 

text. The resultant diffusion constant values are divided into 300 bins to obtain a distribution, 

which is fit to a gamma function probability distribution function given by the expression
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                  (S21)𝑃𝐷𝐹(𝑥) =
𝑒

―
𝑥
β𝑥 ―1 + αβ ―α

Γ[α]

Here  and  are parameters which determine the skewness and peak location of the distribution 

respectively.  We assume  to be the effective diffusion constant for the transport. This gives us 

22.13 nm2/ns for W35 and 22.8 nm2/ns for Y36. 

Figure S6: Loss spectrum of the Stokes-shift dynamics calculated from the Stokes-shift correlation function (Eq. 
(S6)) reported by MD simulations. The two dashed vertical lines refer to the rate constants of 1 and 10 ns-1. Most 
electron hops reported here fall in this interval. 

The Stokes-shift correlation function  in Eq. (S6) is used to calculate the Laplace-Fourier 𝑆𝑋(𝑡)

transform  and the loss function shown in Figure S6𝑆𝑋(𝜔)

 (S22)𝜒′′(𝜔) = 2𝜆𝑟𝑅𝑒[𝜔𝑆𝑋(𝜔)]



Ver 1-23-2023

10

1. Table S1: Acceptor (first column) and donor (second column) residue numbers and the 
reorganization energies calculated from directly from the MD simulations without 
accounting for the polarization. Also listed (sixth column) the edge-to-edge distance 
between the residue pairs used in the Hopfield equation. The last column lists the reaction 
reorganization energies. The edge-to-edge distance is evaluated by finding the pair of 
atoms with the least cartesian distance in the residues involved in the hop. This distance 
is assigned as the edge-to-edge distance. The distance is calculated for every frame of the 
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trajectory. We then calculate the average of the quantity over 30ns between the residue 
pair involved in the hop.

Donor Acceptor Forward Rate (/ns) Backward Rate (/ns) g R (nm)

1 35 36 0.024 25.621 325.759 1.08

2 35 42 0.007 7.848 0.441 1.09

3 35 43 0.0 0.327 0.012 1.61

4 35 54 0.023 24.311 975.706 0.59

5 35 55 0.015 15.964 41.042 1.03

6 36 42 3.183 3.183 0.628 1.27

7 36 43 3.072 3.072 1.42 1.02

8 36 54 6.589 6.589 26.219 1.15

9 36 55 1.702 1.702 4661.247 0.55

10 42 43 6.31 6.31 327.05 1.06

11 42 48 8.476 8.476 45.609 1.07

12 42 54 6.165 6.165 13.142 0.65

13 42 55 5.081 5.081 11.552 1.03

14 43 48 8.481 8.481 4563.516 0.51

15 43 54 3.125 3.125 2.025 1.25

16 43 55 3.502 3.502 559.671 0.69

17 48 54 1.095 1.095 0.18 1.28

18 48 55 4.176 4.176 44.744 1.00

19 54 55 4.293 4.293 269.791 0.86

20 36 69 11.08 0.01 0.692 1.06

21 36 70 7.127 7.127 11.684 1.16

22 36 88 1.104 1.104 0.237 1.37

23 43 70 6.422 6.422 10.354 1.06

24 43 76 3.963 3.963 5.817 1.14

25 43 77 4.153 4.153 28.054 1.05



Ver 1-23-2023

12

26 43 88 0.469 0.469 0.099 1.42

27 43 89 3.208 3.208 10.422 1.25

28 48 70 0.104 0.104 0.011 1.42

29 48 76 6.703 6.703 8.679 1.10

30 48 77 5.376 5.376 2.989 1.06

31 55 69 9.752 0.009 4.441 1.01

32 55 70 0.918 0.918 0.447 1.09

33 55 76 1.606 1.606 26.667 0.94

34 55 77 2.653 2.653 1.108 1.39

35 55 88 0.845 0.845 1.888 1.04

36 55 89 0.089 0.089 0.33 1.25

Table S2: Acceptor (second column) and donor (third column) residue numbers and forward (4th 
column) and backward rate (5th column). The 6th column lists the crossover parameter g and the 
last column lists the average COM-COM distance between the residues (averaged over 3000 
MD frames). The rates have been calculated with the adjusted reorganization energy to account 
for the non-polarizable MD forcefield which was used. 

n Residue Pairs Forward Rate (ns-1) Backward Rate (ns-1) g
1 35-36 0.024 25.621 325.759
2 36-43 3.072 3.072 1.42
3 43-89 3.208 3.208 10.422
4 89-35 9.752 0.009 4.441

Table S3: Forward and backward rates and the crossover parameter g for transitions in a path 
from the start of first unit of CTPR8 protein to the last active residue in the second CTPR8 
protein. The path was calculated using Dijkstra's shortest path algorithm13. Derrida's model16 is 
applied to the path to calculate the diffusion constant of 3.06 nm2/ns.
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Table S4 : Partial charges for Y-H.+ in units of the elementary charge19. Atom names are 
consistent with the CHARMM36 convention. The total sum of the partial charges is +1. The 
partial charges are applied to the residue and the protein is simulated using NAMD. The 
trajectory is used to calculate the electrostatic potential map of either the initial or final state 
during the charge transfer process. The initial state has the electron acceptor residue positively 
charged while the final state has the donor residue positively charged. 
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Table S5 Partial charges for W-H.+ in units of the elementary charge20. Atom names are 
consistent with the CHARMM36 convention. The total sum of the partial charges is +1. The 
partial charges are applied to the residue and the protein is simulated using NAMD. The 
trajectory is used to calculate the electrostatic potential map of either the initial or final state 
during the charge transfer process. The initial state has the electron acceptor residue positively 
charged while the final state has the donor residue positively charged. 
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