## Supporting Information

# Determining The In-Plane Orientation and Binding <br> Mode of Single Fluorescent Dyes in DNA Origami 

## Structures

Kristina Hübner¹, Himanshu Josh², Aleksei Aksimentiev², Fernando D. Stefanỉ,4*<br>Philip Tinnefeld ${ }^{1 *}$ and Guillermo P. Acuna $5^{5^{*}}$

1 Department of Chemistry and Center for NanoScience, Ludwig-MaximiliansUniversität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
${ }^{2}$ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

[^0]${ }^{4}$ Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
${ }^{5}$ Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH1700, Switzerland

## 1. Linking chemistry of ATTO 647N to DNA

a



Figure S1: ATTO 647N linked through a C6 linker to DNA, at the 3'-end (a) or internally via a thymine (b).

## 2. Modulation Data

Table S1: Number of traces that meet the condition of a modulation threshold of $M>0.15$ for each studied sample with the probed fluorophores.

| structure | fluorophore | modulating fraction ( $\boldsymbol{M}>\mathbf{0 . 1 5}$ ) |
| :---: | :---: | :---: |
| sample 1 | ATTO 647N | $95 \%$ (out of 301) |
|  | ATTO 643 | $93 \%$ (out of 72) |
|  | Cy5 | $95 \%$ (out of 151) |
| sample 2 | ATTO 647N | 61 \% (out of 303) |
|  | ATTO 643 | $20 \%$ (out of 319) |
|  | Cy5 | $88 \%$ (out of 162) |
| sample 3 | ATTO 647N | $73 \%$ (out of 224) |




Figure S2: Modulation distributions with standard deviation of the three measured samples with the ATTO 647 N dye (a-c). Modulation data for sample 1 and 2 with the dyes ATTO 643 (d-e) and Cy 5 (f-g).

## 3. DNA-PAINT Data

Due to the design of the DNA origami rectangle an upside down binding of the structure to the functionalized surface is possible. The chiral DNA-PAINT pattern on the DNA origami structure enables to distinguish flipped from non-flipped structures. Figure S 3 a shows a schematic of the chiral DNA-PAINT pattern and figure S 3b shows an image with the two different binding possibilities, facing with the top up (orange square) or down (green square).

Furthermore, we can make a distance analysis of the measured DNA origami structures showing that the measured distances (figure S 3c) fit well to the designed distances. For this kind of analysis the super resolution data were first processed with the open source software Picasso ${ }^{1}$. The localization files were exported for further analysis with self-written Labview software.


Figure S3: DNA-PAINT super resolution sample design and data. Showing a schematic of the asymmetric DNA-PAINT pattern (a) and super-resolved images of the DNA-PAINT measurements (b, scale bar 100 nm ), where structures lying with the top up (orange square) or down (green square) can be distinguished. A histogram (c) is showing the measured distances for the asymmetric pattern for 297 molecules.

## 4. ATTO 647N dye orientation of flipped and non-flipped DNA origami structures

If both populations, non-flipped and flipped origami structures distinguished by the super resolved images in figure S3, are plotted separately the histograms draw similar distributions. This indicates that the orientation of the DNA origami structure on the surface does not has an influence on the ATTO 647N dye sticking to the DNA. The histograms are plotted in figure S 4 and fitted with Gaussian distribution functions to extract the mean orientation with their standard deviations.


Figure S4: ATTO $647 N$ dye orientation distributions with standard deviations of the three samples. Separated Histograms of non-flipped and flipped samples show the same distributions as the combined histograms in the first row.
5. All-atom molecular dynamics simulations

b


e


Figure S5: (a) A representative snapshot of the fully assembled all-atom model of the ATTO $647 N$ dye-conjugated DNA system. The template strand of the DNA origami structure is shown in cyan, the staple strand carrying the dye molecule is shown in red and the other staple strand is shown in orange. The atoms of the dye molecule are shown using green spheres whereas the atoms of the C6 anchor between the dye and the DNA are shown using magenta spheres. Sodium, potassium and chloride ions are shown using yellow, tan and light cyan spheres, respectively. The volume occupied by water molecules is represented by a semi-transparent white surface. (b) Schematics illustrating the definition of the angle ( $\phi$ ) between the helical axis of the DNA and the dipole moment of the ATTO 647N dye molecule. (c) The angle between the helical axis of the DNA and the dye molecule's dipole as a function of simulation time for sample 1, 2, and 3. The first 50 ns of each trace (yellow rectangle) were excluded from the histogram analysis. (d). Histograms of the $\phi$ angles observed in the MD simulations of samples 1-3 with the preferred orientations marked (1-3). (e) Microscopic configurations of the simulation systems corresponding to the preferred orientations of the dye labelled 1-3 in panel d. Red, green and blue boundary box indicates microscopic configurations extracted from the MD trajectories of sample 1, 2, and 3, respectively.

In addition to the simulations of the ATTO 647 N dye-conjugated DNA system described in the main text and Figure S5, four $1 \mu \mathrm{~s}$-long equilibrium all-atom molecular dynamics simulations were performed to study the orientation of a Cy5 dye conjugated to DNA in sample 1 and 2 geometries, two independent simulations for each sample. Supplementary movie S4 and S5 illustrate the simulation trajectories. During the simulations, the Cy5 dyes were observed to sample a wide range of orientations with respect to the DNA axis (Figure S6 a, b). For sample 1, where the next two DNA bases after the attached dye were missing, the Cy5 dye was frequently observed to engage in base stacking interactions with the unpaired nucleotides. For sample 2, where all bases ware paired, the Cy5 dye was observed to transiently bind to minor and major groves of its parent and neighboring DNA helices. The helical structure of the DNA near the dye attachment point was better preserved in sample 2 than in sample 1. Unfortunately, the simulation trajectories were too short to sample Cy5 orientations with enough statistics to make quantitative conclusions about the preferred orientation of the dye.


Figure S6: (a) Angle between the helical axis of DNA and the Cy5 molecule's dipole as a function of simulation time for sample 1 and 2. Two independent simulations were performed for each sample. (b) Histograms of the angle distribution for sample 1 and sample 2 simulations. The first 50 ns of each simulation (yellow region in panel a) were excluded from the histogram analysis.

## 6. Supplementary movies

Supplementary movies S1, S2 and S3 show a $1 \mu$ s long MD simulation trajectories of the ATTO 647 N dye-conjugated DNA systems corresponding to sample 1,2 and 3 , respectively. Supplementary movies S4 and S5 shows the $1 \mu \mathrm{~s}$ long MD simulation trajectories of the Cy5 dye-conjugated DNA systems corresponding to sample 1 and 2, respectively. The scaffold strand of the DNA origami structure is shown in cyan, the staple strand carrying the dye molecule is shown in red and the other staple strand is shown in orange. The atoms of the dye molecule are shown using green spheres whereas the atoms of C6 molecules (anchor between the dye and DNA) are shown using magenta spheres. Water and counter ions are not shown for clarity.

## 7. DNA origami ssDNA strands

Table 1: Unmodified ssDNA strands

| Sequence ( $5^{\text {¢-> }} 3^{\text {' }}$ ) | Number |
| :---: | :---: |
| AGTATAAAGTTCAGCTAATGCAGATGTCTTTC | 1 |
| AATACTGCCCAAAAGGAATTACGTGGCTCA | 2 |
| ATCCCAATGAGAATTAACTGAACAGTTACCAG | 3 |
| TGGAACAACCGCCTGGCCCTGAGGCCCGCT | 4 |
| GAGGGTAGGATTCAAAAGGGTGAGACATCCAA | 5 |
| TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCG | 6 |
| CTACCATAGTTTGAGTAACATTTAAAATAT | 7 |
| GCCTCCCTCAGAATGGAAAGCGCAGTAACAGT | 8 |
| AGAAAACAAAGAAGATGATGAAACAGGCTGCG | 9 |
| AAAGCACTAAATCGGAACCCTAATCCAGTT | 10 |
| AATTGAGAATTCTGTCCAGACGACTAAACCAA | 11 |
| TAGGTAAACTATTTTTGAGAGATCAAACGTTA | 12 |
| AGGCAAAGGGAAGGGCGATCGGCAATTCCA | 13 |
| CATTTGAAGGCGAATTATTCATTTTTGTTTGG | 14 |
| ATACCCAACAGTATGTTAGCAAATTAGAGC | 15 |
| CTTTAGGGCCTGCAACAGTGCCAATACGTG | 16 |
| TGTAGCCATTAAAATTCGCATTAAATGCCGGA | 17 |
| CACCAGAAAGGTTGAGGCAGGTCATGAAAG | 18 |
| TTCCAGTCGTAATCATGGTCATAAAAGGGG | 19 |
| TCAAGTTTCATTAAAGGTGAATATAAAAGA | 20 |
| ACCCTTCTGACCTGAAAGCGTAAGACGCTGAG | 21 |
| GCGAAAAATCCCTTATAAATCAAGCCGGCG | 22 |
| TTATTACGAAGAACTGGCATGATTGCGAGAGG | 23 |
| AAAGGCCGGAGACAGCTAGCTGATAAATTAATTTTTGT | 24 |
| AAATCACCTTCCAGTAAGCGTCAGTAATAA | 25 |
| CATCAAGTAAAACGAACTAACGAGTTGAGA | 26 |
| TTAGGATTGGCTGAGACTCCTCAATAACCGAT | 27 |
| AGCGCGATGATAAATTGTGTCGTGACGAGA | 28 |
| TGACAACTCGCTGAGGCTTGCATTATACCA | 29 |


| Sequence (5'-> 3') | Number |
| :---: | :---: |
| TAATCAGCGGATTGACCGTAATCGTAACCG | 30 |
| GATGTGCTTCAGGAAGATCGCACAATGTGA | 31 |
| ACCGATTGTCGGCATTTTCGGTCATAATCA | 32 |
| GCCCTTCAGAGTCCACTATTAAAGGGTGCCGT | 33 |
| GCGAACCTCCAAGAACGGGTATGACAATAA | 34 |
| CTTTTACAAAATCGTCGCTATTAGCGATAG | 35 |
| AAACAGCTTTTTGCGGGATCGTCAACACTAAA | 36 |
| AAATTAAGTTGACCATTAGATACTTTTGCG | 37 |
| TACCGAGCTCGAATTCGGGAAACCTGTCGTGCAGCTGATT | 38 |
| AAGGAAACATAAAGGTGGCAACATTATCACCG | 39 |
| CTTAGATTTAAGGCGTTAAATAAAGCCTGT | 40 |
| ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA | 41 |
| TAAATGAATTTTCTGTATGGGATTAATTTCTT | 42 |
| ACAAACGGAAAAGCCCCAAAAACACTGGAGCA | 43 |
| ATTATACTAAGAAACCACCAGAAGTCAACAGT | 44 |
| CTCGTATTAGAAATTGCGTAGATACAGTAC | 45 |
| CAGAAGATTAGATAATACATTTGTCGACAA | 46 |
| ATTTTAAAATCAAAATTATTTGCACGGATTCG | 47 |
| TTTATCAGGACAGCATCGGAACGACACCAACCTAAAACGA | 48 |
| TTGACAGGCCACCACCAGAGCCGCGATTTGTA | 49 |
| CGTAAAACAGAAATAAAAATCCTTTGCCCGAAAGATTAGA | 50 |
| GTTTATCAATATGCGTTATACAAACCGACCGTGTGATAAA | 51 |
| CTGAGCAAAAATTAATTACATTTTGGGTTA | 52 |
| ATGCAGATACATAACGGGAATCGTCATAAATAAAGCAAAG | 53 |
| GTATAGCAAACAGTTAATGCCCAATCCTCA | 54 |
| ATATTCGGAACCATCGCCCACGCAGAGAAGGA | 55 |
| TTATACCACCAAATCAACGTAACGAACGAG | 56 |
| GCTATCAGAAATGCAATGCCTGAATTAGCA | 57 |
| TCACCGACGCACCGTAATCAGTAGCAGAACCG | 58 |
| ATTATCATTCAATATAATCCTGACAATTAC | 59 |
| TTGCTCCTTTCAAATATCGCGTTTGAGGGGGT | 60 |
| GCCAGTTAGAGGGTAATTGAGCGCTTTAAGAA | 61 |


| Sequence (5'-> 3') | Number |
| :---: | :---: |
| CAGGAGGTGGGGTCAGTGCCTTGAGTCTCTGAATTTACCG | 62 |
| GAAATTATTGCCTTTAGCGTCAGACCGGAACC | 63 |
| AGGCTCCAGAGGCTTTGAGGACACGGGTAA | 64 |
| ATACATACCGAGGAAACGCAATAAGAAGCGCATTAGACGG | 65 |
| TTAATGAACTAGAGGATCCCCGGGGGGTAACG | 66 |
| GCCATCAAGCTCATTTTTTAACCACAAATCCA | 67 |
| AAGTAAGCAGACACCACGGAATAATATTGACG | 68 |
| AGCCAGCAATTGAGGAAGGTTATCATCATTTT | 69 |
| ATTACCTTTGAATAAGGCTTGCCCAAATCCGC | 70 |
| CGAAAGACTTTGATAAGAGGTCATATTTCGCA | 71 |
| CGATAGCATTGAGCCATTTGGGAACGTAGAAA | 72 |
| TCACCAGTACAAACTACAACGCCTAGTACCAG | 73 |
| TTAAAGCCAGAGCCGCCACCCTCGACAGAA | 74 |
| TCATTCAGATGCGATTTTAAGAACAGGCATAG | 75 |
| CCAGGGTTGCCAGTTTGAGGGGACCCGTGGGA | 76 |
| ACAACATGCCAACGCTCAACAGTCTTCTGA | 77 |
| GTAATAAGTTAGGCAGAGGCATTTATGATATT | 78 |
| AGACGACAAAGAAGTTTTGCCATAATTCGAGCTTCAA | 79 |
| GATGGCTTATCAAAAAGATTAAGAGCGTCC | 80 |
| TAAATCAAAATAATTCGCGTCTCGGAAACC | 81 |
| TTAACGTCTAACATAAAAACAGGTAACGGA | 82 |
| AACGCAAAGATAGCCGAACAAACCCTGAAC | 83 |
| ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT | 84 |
| ACACTCATCCATGTTACTTAGCCGAAAGCTGC | 85 |
| TTAACACCAGCACTAACAACTAATCGTTATTA | 86 |
| GCCGTCAAAAAACAGAGGTGAGGCCTATTAGT | 87 |
| ATCGCAAGTATGTAAATGCTGATGATAGGAAC | 88 |
| TAAATCATATAACCTGTTTAGCTAACCTTTAA | 89 |
| CATGTAATAGAATATAAAGTACCAAGCCGT | 90 |
| CCTGATTGCAATATATGTGAGTGATCAATAGT | 91 |
| CCTAAATCAAAATCATAGGTCTAAACAGTA | 92 |
| TGAAAGGAGCAAATGAAAAATCTAGAGATAGA | 93 |


| Sequence ( $5^{\circ}->3^{\text {¢ }}$ ) | Number |
| :---: | :---: |
| GACCTGCTCTTTGACCCCCAGCGAGGGAGTTA | 94 |
| CCCGATTTAGAGCTTGACGGGGAAAAAGAATA | 95 |
| CATAAATCTTTGAATACCAAGTGTTAGAAC | 96 |
| GCGAGTAAAAATATTTAAATTGTTACAAAG | 97 |
| AATGGTCAACAGGCAAGGCAAAGAGTAATGTG | 98 |
| GACCAACTAATGCCACTACGAAGGGGGTAGCA | 99 |
| ACCTTTTTATTTTAGTTAATTTCATAGGGCTT | 100 |
| GCAAGGCCTCACCAGTAGCACCATGGGCTTGA | 101 |
| CAACTGTTGCGCCATTCGCCATTCAAACATCA | 102 |
| GACAAAAGGTAAAGTAATCGCCATATTTAACAAAACTTTT | 103 |
| AATACGTTTGAAAGAGGACAGACTGACCTT | 104 |
| CAGCGAAACTTGCTTTCGAGGTGTTGCTAA | 105 |
| TATAACTAACAAAGAACGCGAGAACGCCAA | 106 |
| ATCCCCCTATACCACATTCAACTAGAAAAATC | 107 |
| TATTAAGAAGCGGGGTTTTGCTCGTAGCAT | 108 |
| CCACCCTCTATTCACAAACAAATACCTGCCTA | 109 |
| TCAAATATAACCTCCGGCTTAGGTAACAATTT | 110 |
| GATGGTTTGAACGAGTAGTAAATTTACCATTA | 111 |
| TATATTTTGTCATTGCCTGAGAGTGGAAGATTGTATAAGC | 112 |
| AAAGTCACAAAATAAACAGCCAGCGTTTTA | 123 |
| GCGGATAACCTATTATTCTGAAACAGACGATT | 124 |
| CAGCAAAAGGAAACGTCACCAATGAGCCGC | 125 |
| TCATCGCCAACAAAGTACAACGGACGCCAGCA | 126 |
| CTTTTGCAGATAAAAACCAAAATAAAGACTCC | 127 |
| CACAACAGGTGCCTAATGAGTGCCCAGCAG | 128 |
| TGCATCTTTCCCAGTCACGACGGCCTGCAG | 129 |
| CGCGCAGATTACCTTTTTTAATGGGAGAGACT | 130 |
| TTTTATTTAAGCAAATCAGATATTTTTTGT | 131 |
| GAATTTATTTAATGGTTTGAAATATTCTTACC | 132 |
| AACACCAAATTTCAACTTTAATCGTTTACC | 133 |
| GCGCAGACAAGAGGCAAAAGAATCCCTCAG | 134 |
| GTACCGCAATTCTAAGAACGCGAGTATTATTT | 135 |


| Sequence ( $5^{\bullet}->3^{\text {¢ }}$ ) | Number |
| :---: | :---: |
| GCGGAACATCTGAATAATGGAAGGTACAAAAT | 136 |
| AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCC | 137 |
| GGCCTTGAAGAGCCACCACCCTCAGAAACCAT | 138 |
| TACGTTAAAGTAATCTTGACAAGAACCGAACT | 139 |
| AAGGCCGCTGATACCGATAGTTGCGACGTTAG | 140 |
| AATAGTAAACACTATCATAACCCTCATTGTGA | 141 |
| CGGATTGCAGAGCTTAATTGCTGAAACGAGTA | 142 |
| GATTTAGTCAATAAAGCCTCAGAGAACCCTCA | 143 |
| CTTATCATTCCCGACTTGCGGGAGCCTAATTT | 144 |
| AATAGCTATCAATAGAAAATTCAACATTCA | 145 |
| CTTTAATGCGCGAACTGATAGCCCCACCAG | 146 |
| AGAAAGGAACAACTAAAGGAATTCAAAAAAA | 147 |
| ACAACTTTCAACAGTTTCAGCGGATGTATCGG | 148 |
| GCACAGACAATATTTTTGAATGGGGTCAGTA | 149 |
| TTCTACTACGCGAGCTGAAAAGGTTACCGCGC | 150 |
| CAACCGTTTCAAATCACCATCAATTCGAGCCA | 151 |
| TCAATATCGAACCTCAAATATCAATTCCGAAA | 152 |
| TAAAAGGGACATTCTGGCCAACAAAGCATC | 153 |
| GTCGACTTCGGCCAACGCGCGGGGTTTTTC | 154 |
| GCCCGTATCCGGAATAGGTGTATCAGCCCAAT | 155 |
| AACGTGGCGAGAAAGGAAGGGAAACCAGTAA | 156 |
| GCAATTCACATATTCCTGATTATCAAAGTGTA | 157 |
| AAGCCTGGTACGAGCCGGAAGCATAGATGATG | 158 |
| CAAATCAAGTTTTTTGGGGTCGAAACGTGGA | 159 |
| CTCCAACGCAGTGAGACGGGCAACCAGCTGCA | 160 |
| AACGCAAAATCGATGAACGGTACCGGTTGA | 161 |
| CCAATAGCTCATCGTAGGAATCATGGCATCAA | 162 |
| CCACCCTCATTTTCAGGGATAGCAACCGTACT | 163 |
| AGGAACCCATGTACCGTAACACTTGATATAA | 164 |
| GTTTTAACTTAGTACCGCCACCCAGAGCCA | 165 |
| CCAACAGGAGCGAACCAGACCGGAGCCTTTAC | 166 |
| TTTTCACTCAAAGGGCGAAAAACCATCACC | 167 |


| Sequence (5‘-> 3‘) | Number |
| :--- | ---: |
| TCTAAAGTTTTGTCGTCTTTCCAGCCGACAA | 168 |
| TCGGCAAATCCTGTTTGATGGTGGACCCTCAA | 169 |
| TCCACAGACAGCCCTCATAGTTAGCGTAACGA | 170 |
| AGAGAGAAAAAAATGAAAATAGCAAGCAAACT | 171 |
| TAAGAGCAAATGTTTAGACTGGATAGGAAGCC | 172 |

Table 2: Modified ssDNA strands.

| Sequence (5‘ $->3^{‘}$ ) | Number |
| :--- | :--- |
| Biotin strands | 173 |
| Biotin-TAGAGAGTTATTTTCATTTGGGGATAGTAGTAGCATTA | 174 |
| Biotin-GAAACGATAGAAGGCTTATCCGGTCTCATCGAGAACAAGC | 175 |
| Biotin-ATAAGGGAACCGGATATTCATTACGTCAGGACGTTGGGAA | 176 |
| Biotin-AGCCACCACTGTAGCGCGTTTTCAAGGGAGGGAAGGTAAA | 177 |
| Biotin-GAGAAGAGATAACCTTGCTTCTGTTCGGGAGAAACAATAA | 178 |
| Biotin-CGGATTCTGACGACAGTATCGGCCGCAAGGCGATTAAGTT | 179 |
| DNA-PAINT functionalized strands | 180 |
| ACGCTAACACCCACAAGAATTGAAAATAGCTTAAATGCCCG | 181 |
| TTTAGGACAAATGCTTTAAACAATCAGGTCTTAAATGCCCG | 182 |
| TGTAGAAATCAAGATTAGTTGCTCTTACCATTAAATGCCCG | 183 |
| AACAGTTTTGTACCAAAAACATTTTATTTCTTAAATGCCCG | 185 |
| ATATTTTGGCTTTCATCAACATTATCCAGCCATTAAATGCCCG |  |
| GCCTTAAACCAATCAATAATCGGCACGCGCCTTTAAATGCCCG | 186 |
| GAGAGATAGAGCGTCTTTCCAGAGGTTTTGAATTAAATGCCCG |  |
| GCTTTCCGATTACGCCAGCTGGCGGCTGTTTCTTAAATGCCCG |  |

| Sequence (5‘ ${ }^{\text {- }>3^{`} \text { ) }}$ | Number |
| :--- | :--- |
| TCTTCGCTGCACCGCTTCTGGTGCGGCCTTCCTTAAATGCCCG | 187 |
| GCCCGAGAGTCCACGCTGGTTTGCAGCTAACTTTAAATGCCCG | 188 |
| TTTACCCCAACATGTTTTAAATTTCCATATTTAAATGCCCG | 189 |
| AACAAGAGGGATAAAAATTTTTAGCATAAAGCTTAAATGCCCG | 190 |
| CTGTAGCTTGACTATTATAGTCAGTTCATTGATTAAATGCCCG | 191 |
| CTGTGTGATTGCGTTGCGCTCACTAGAGTTGCTTAAATGCCCG | 192 |
| CACATTAAAATTGTTATCCGCTCATGCGGGCCTTAAATGCCCG | 193 |
| GTTTATTTTGTCACAATCTTACCGAAGCCCTTTAATATCATTAAATGCCCG | 194 |

Table 3: Replaced ssDNA strands.

| Sequence (5‘->3‘) | Replaced <br> Staple <br> Number |
| :--- | :--- |
| Strands for sample 1 |  |
| CGAAAGACTTTGATAAGAGGTCATATTTCG-ATTO 647N | 71 |
|  |  |
| Strands for sample 2 | 71 |
| CGAAAGACTTTGATAAGAGGTCATATTTCG- ATTO 647N | 89 |
| CAAATGGTCAACAGGCAAGGCAAAGAGTAATGTG |  |
|  | 172 |
| Strands for sample 3 |  |
| TAAGAGCAAATGTTTAGACTGGATAG-dT ATTO 647N-AAGCC |  |

[^1]
## References

(1) Schnitzbauer, J.; Strauss, M. T.; Schlichthaerle, T.; Schueder, F.; Jungmann, R. SuperResolution Microscopy with DNA-PAINT. Nature protocols 2017, 12, 1198-1228.


[^0]:    ${ }^{3}$ Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina

[^1]:    Imager strand: CGGGCAT-ATTO 542

